4 research outputs found

    Reducing power consumption in LEO satellite network

    Get PDF
    Current low earth orbit (LEO) satellite network display poor power efficiency, running network devices at full capacity all the time regardless of the traffic matrix and the distribution of the population over the Globe. Most of the research on energy efficiency of LEO satellites has focused on component level or link level. Therefore, this kind of research is not holistic to try to look at the satellite system as a single node. To enhance the energy efficiency. The solution should exploits multipath routing and load balancing. LEO network is overprovisioned, and hence selectively shutting down some satellite nodes and links during off-peaks hours seems like a good way to reduce energy consumption. In this paper, we exploit the fact that due to geographical and climatic conditions, some satellite links are expected to be loaded with data while others remain unused. Our approach is to power down satellite nodes and links during period of low traffic, while guaranteeing the connectivity and QoS. Finding the optimal solution is NP-problem and therefore, we explore in this work two heuristic algorithms. We evaluate our heuristics on a realistic LEO topology and real traffic matrices. Simulation results show that the power saving can be significant

    Utilization of idle time slot in spectrum sensing under noise uncertainty

    Get PDF
    Spectrum sensing in cognitive radio (CR) is a critical process as it directly influences the accuracy of detection. Noise uncertainty affects the reliability of detecting vacant holes in the spectrum, thus limiting the access of that spectrum by secondary users (SUs). In such uncertain environment; SUs sense the received power of a primary user (PU) independently with different measures of signal-to-noise ratio (SNR). Long sensing time serves in mitigating the effect of noise uncertainty, but on the cost of throughput performance of CR system. In this paper, the scheme of an asynchronous and crossed sensing-reporting is presented. The scheme reduces energy consumption during sensing process without affecting the detection accuracy. Exploiting the included idle time () in sensing time slot; each SU collects power samples with higher SNR directly performs the reporting process to a fusion center (FC) consecutively. The FC terminates the sensing and reporting processes at a specific sensing time that corresponds to the lowest SNR (). Furthermore, this integrated scheme aims at optimizing the total frame duration (). Mathematical expressions of the scheme are obtained. Analytical results show the efficiency of the scheme in terms of energy saving and throughput increment under noise uncerainty

    Modeling students' preferences and knowledge for improving educational achievements

    No full text
    Student modeling is a fundamental aspect in customized learning environments. It enables unified representation of students' characteristics that supports creating personalized learning experiences. This paper aims to build an effective student model by combining learning preferences with skill levels. A student profile is formulated upon detecting the user's learning styles and learning preferences, as well as their knowledge level and misconceptions. The pieces of information are collected through an interactive online platform, by completing personal and knowledge assessment quizzes. Moreover, a learner can make his/her profile open for other learners as a starting point for supporting collaborative learning. The results showed an improvement of students' educational achievements who used the platform, and the satisfaction level reported by non-neutral users was averaged as a score of 90%. The evaluation of this platform showed promising results regarding its ability in describing students in a comprehensive manner
    corecore